\(\int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx\) [149]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 291 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {2 (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{a f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {6 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 a^2 c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-2/5*(g*cos(f*x+e))^(5/2)/f/g/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2)-2*(g*cos(f*x+e))^(5/2)/a/f/g/(a+a*
sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(5/2)+6/5*(g*cos(f*x+e))^(5/2)/a^2/f/g/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+
e))^(1/2)+6/5*(g*cos(f*x+e))^(5/2)/a^2/c/f/g/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)-6/5*g*(cos(1/2*f*x+
1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)
/a^2/c^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 1.06 (sec) , antiderivative size = 291, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2931, 2921, 2721, 2719} \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {6 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{5 a^2 c^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 c f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{a f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{5 f g (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}} \]

[In]

Int[(g*Cos[e + f*x])^(3/2)/((a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

(-2*(g*Cos[e + f*x])^(5/2))/(5*f*g*(a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(5/2)) - (2*(g*Cos[e + f*x]
)^(5/2))/(a*f*g*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(5/2)) + (6*(g*Cos[e + f*x])^(5/2))/(5*a^2*f*g
*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2)) + (6*(g*Cos[e + f*x])^(5/2))/(5*a^2*c*f*g*Sqrt[a + a*Sin
[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) - (6*g*Sqrt[Cos[e + f*x]]*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2
])/(5*a^2*c^2*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2921

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2931

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^
n/(a*f*g*(2*m + p + 1))), x] + Dist[(m + n + p + 1)/(a*(2*m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f
*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && E
qQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}}+\frac {\int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}} \, dx}{a} \\ & = -\frac {2 (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{a f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}+\frac {3 \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx}{a^2} \\ & = -\frac {2 (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{a f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {3 \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx}{5 a^2 c} \\ & = -\frac {2 (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{a f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {3 \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{5 a^2 c^2} \\ & = -\frac {2 (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{a f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {(3 g \cos (e+f x)) \int \sqrt {g \cos (e+f x)} \, dx}{5 a^2 c^2 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {2 (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{a f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {\left (3 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{5 a^2 c^2 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {2 (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{a f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {6 (g \cos (e+f x))^{5/2}}{5 a^2 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {6 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 a^2 c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.12 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.36 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\frac {(g \cos (e+f x))^{3/2} \sec ^3(e+f x) \left (-12 \cos ^{\frac {5}{2}}(e+f x) E\left (\left .\frac {1}{2} (e+f x)\right |2\right )+7 \sin (e+f x)+3 \sin (3 (e+f x))\right )}{10 a^2 c^2 f \sqrt {a (1+\sin (e+f x))} \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[(g*Cos[e + f*x])^(3/2)/((a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

((g*Cos[e + f*x])^(3/2)*Sec[e + f*x]^3*(-12*Cos[e + f*x]^(5/2)*EllipticE[(e + f*x)/2, 2] + 7*Sin[e + f*x] + 3*
Sin[3*(e + f*x)]))/(10*a^2*c^2*f*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.06 (sec) , antiderivative size = 447, normalized size of antiderivative = 1.54

method result size
default \(-\frac {2 \sqrt {g \cos \left (f x +e \right )}\, g \left (3 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \left (\cos ^{2}\left (f x +e \right )\right )-3 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \left (\cos ^{2}\left (f x +e \right )\right )+6 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \cos \left (f x +e \right )-6 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \cos \left (f x +e \right )+3 i \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right )-3 i \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right )-3 \sin \left (f x +e \right )-\tan \left (f x +e \right )-\sec \left (f x +e \right ) \tan \left (f x +e \right )\right )}{5 f \left (1+\cos \left (f x +e \right )\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, a^{2} c^{2}}\) \(447\)

[In]

int((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/5/f*(g*cos(f*x+e))^(1/2)*g/(1+cos(f*x+e))/(a*(1+sin(f*x+e)))^(1/2)/(-c*(sin(f*x+e)-1))^(1/2)/a^2/c^2*(3*I*(
1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+e)^2-
3*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+
e)^2+6*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*cos
(f*x+e)-6*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*
cos(f*x+e)+3*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),
I)-3*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)-3*sin
(f*x+e)-tan(f*x+e)-sec(f*x+e)*tan(f*x+e))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.54 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\frac {3 i \, \sqrt {2} \sqrt {a c g} g \cos \left (f x + e\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) - 3 i \, \sqrt {2} \sqrt {a c g} g \cos \left (f x + e\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right ) + 2 \, {\left (3 \, g \cos \left (f x + e\right )^{2} + g\right )} \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{5 \, a^{3} c^{3} f \cos \left (f x + e\right )^{4}} \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

1/5*(3*I*sqrt(2)*sqrt(a*c*g)*g*cos(f*x + e)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) +
 I*sin(f*x + e))) - 3*I*sqrt(2)*sqrt(a*c*g)*g*cos(f*x + e)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0,
 cos(f*x + e) - I*sin(f*x + e))) + 2*(3*g*cos(f*x + e)^2 + g)*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sq
rt(-c*sin(f*x + e) + c)*sin(f*x + e))/(a^3*c^3*f*cos(f*x + e)^4)

Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)/((a*sin(f*x + e) + a)^(5/2)*(-c*sin(f*x + e) + c)^(5/2)), x)

Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(5/2)),x)

[Out]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(5/2)), x)